\(\int \frac {(3+3 \sin (e+f x))^{3/2}}{c+d \sin (e+f x)} \, dx\) [533]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 95 \[ \int \frac {(3+3 \sin (e+f x))^{3/2}}{c+d \sin (e+f x)} \, dx=\frac {6 \sqrt {3} (c-d) \text {arctanh}\left (\frac {\sqrt {3} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {3+3 \sin (e+f x)}}\right )}{d^{3/2} \sqrt {c+d} f}-\frac {18 \cos (e+f x)}{d f \sqrt {3+3 \sin (e+f x)}} \]

[Out]

2*a^(3/2)*(c-d)*arctanh(cos(f*x+e)*a^(1/2)*d^(1/2)/(c+d)^(1/2)/(a+a*sin(f*x+e))^(1/2))/d^(3/2)/f/(c+d)^(1/2)-2
*a^2*cos(f*x+e)/d/f/(a+a*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.13 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.03, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {2842, 21, 2852, 214} \[ \int \frac {(3+3 \sin (e+f x))^{3/2}}{c+d \sin (e+f x)} \, dx=\frac {2 a^{3/2} (c-d) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {a \sin (e+f x)+a}}\right )}{d^{3/2} f \sqrt {c+d}}-\frac {2 a^2 \cos (e+f x)}{d f \sqrt {a \sin (e+f x)+a}} \]

[In]

Int[(a + a*Sin[e + f*x])^(3/2)/(c + d*Sin[e + f*x]),x]

[Out]

(2*a^(3/2)*(c - d)*ArcTanh[(Sqrt[a]*Sqrt[d]*Cos[e + f*x])/(Sqrt[c + d]*Sqrt[a + a*Sin[e + f*x]])])/(d^(3/2)*Sq
rt[c + d]*f) - (2*a^2*Cos[e + f*x])/(d*f*Sqrt[a + a*Sin[e + f*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 2842

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n))), x] + Dist[1/(
d*(m + n)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^n*Simp[a*b*c*(m - 2) + b^2*d*(n + 1) + a^2*d
*(m + n) - b*(b*c*(m - 1) - a*d*(3*m + 2*n - 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &
& NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] &&  !LtQ[n, -1] && (IntegersQ[2*m,
2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 a^2 \cos (e+f x)}{d f \sqrt {a+a \sin (e+f x)}}+\frac {2 \int \frac {-\frac {1}{2} a^2 (c-d)-\frac {1}{2} a^2 (c-d) \sin (e+f x)}{\sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))} \, dx}{d} \\ & = -\frac {2 a^2 \cos (e+f x)}{d f \sqrt {a+a \sin (e+f x)}}-\frac {(a (c-d)) \int \frac {\sqrt {a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx}{d} \\ & = -\frac {2 a^2 \cos (e+f x)}{d f \sqrt {a+a \sin (e+f x)}}+\frac {\left (2 a^2 (c-d)\right ) \text {Subst}\left (\int \frac {1}{a c+a d-d x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{d f} \\ & = \frac {2 a^{3/2} (c-d) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {a+a \sin (e+f x)}}\right )}{d^{3/2} \sqrt {c+d} f}-\frac {2 a^2 \cos (e+f x)}{d f \sqrt {a+a \sin (e+f x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 7.20 (sec) , antiderivative size = 744, normalized size of antiderivative = 7.83 \[ \int \frac {(3+3 \sin (e+f x))^{3/2}}{c+d \sin (e+f x)} \, dx=-\frac {3 \sqrt {3} \left ((c-d) \text {RootSum}\left [c+4 d \text {$\#$1}+2 c \text {$\#$1}^2-4 d \text {$\#$1}^3+c \text {$\#$1}^4\&,\frac {-c \sqrt {d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right )-d^{3/2} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right )-d \sqrt {c+d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right )-2 c \sqrt {d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}-2 d^{3/2} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}-c \sqrt {c+d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}+c \sqrt {d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}^2+d^{3/2} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}^2+3 d \sqrt {c+d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}^2-c \sqrt {c+d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}^3}{-d-c \text {$\#$1}+3 d \text {$\#$1}^2-c \text {$\#$1}^3}\&\right ]+(c-d) \text {RootSum}\left [c+4 d \text {$\#$1}+2 c \text {$\#$1}^2-4 d \text {$\#$1}^3+c \text {$\#$1}^4\&,\frac {-c \sqrt {d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right )-d^{3/2} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right )+d \sqrt {c+d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right )-2 c \sqrt {d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}-2 d^{3/2} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}+c \sqrt {c+d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}+c \sqrt {d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}^2+d^{3/2} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}^2-3 d \sqrt {c+d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}^2+c \sqrt {c+d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}^3}{-d-c \text {$\#$1}+3 d \text {$\#$1}^2-c \text {$\#$1}^3}\&\right ]+4 \sqrt {d} (c+d) \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )\right ) (1+\sin (e+f x))^{3/2}}{2 d^{3/2} (c+d) f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^3} \]

[In]

Integrate[(3 + 3*Sin[e + f*x])^(3/2)/(c + d*Sin[e + f*x]),x]

[Out]

(-3*Sqrt[3]*((c - d)*RootSum[c + 4*d*#1 + 2*c*#1^2 - 4*d*#1^3 + c*#1^4 & , (-(c*Sqrt[d]*Log[-#1 + Tan[(e + f*x
)/4]]) - d^(3/2)*Log[-#1 + Tan[(e + f*x)/4]] - d*Sqrt[c + d]*Log[-#1 + Tan[(e + f*x)/4]] - 2*c*Sqrt[d]*Log[-#1
 + Tan[(e + f*x)/4]]*#1 - 2*d^(3/2)*Log[-#1 + Tan[(e + f*x)/4]]*#1 - c*Sqrt[c + d]*Log[-#1 + Tan[(e + f*x)/4]]
*#1 + c*Sqrt[d]*Log[-#1 + Tan[(e + f*x)/4]]*#1^2 + d^(3/2)*Log[-#1 + Tan[(e + f*x)/4]]*#1^2 + 3*d*Sqrt[c + d]*
Log[-#1 + Tan[(e + f*x)/4]]*#1^2 - c*Sqrt[c + d]*Log[-#1 + Tan[(e + f*x)/4]]*#1^3)/(-d - c*#1 + 3*d*#1^2 - c*#
1^3) & ] + (c - d)*RootSum[c + 4*d*#1 + 2*c*#1^2 - 4*d*#1^3 + c*#1^4 & , (-(c*Sqrt[d]*Log[-#1 + Tan[(e + f*x)/
4]]) - d^(3/2)*Log[-#1 + Tan[(e + f*x)/4]] + d*Sqrt[c + d]*Log[-#1 + Tan[(e + f*x)/4]] - 2*c*Sqrt[d]*Log[-#1 +
 Tan[(e + f*x)/4]]*#1 - 2*d^(3/2)*Log[-#1 + Tan[(e + f*x)/4]]*#1 + c*Sqrt[c + d]*Log[-#1 + Tan[(e + f*x)/4]]*#
1 + c*Sqrt[d]*Log[-#1 + Tan[(e + f*x)/4]]*#1^2 + d^(3/2)*Log[-#1 + Tan[(e + f*x)/4]]*#1^2 - 3*d*Sqrt[c + d]*Lo
g[-#1 + Tan[(e + f*x)/4]]*#1^2 + c*Sqrt[c + d]*Log[-#1 + Tan[(e + f*x)/4]]*#1^3)/(-d - c*#1 + 3*d*#1^2 - c*#1^
3) & ] + 4*Sqrt[d]*(c + d)*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2]))*(1 + Sin[e + f*x])^(3/2))/(2*d^(3/2)*(c + d)
*f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^3)

Maple [A] (verified)

Time = 1.32 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.44

method result size
default \(-\frac {2 a \left (\sin \left (f x +e \right )+1\right ) \sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, \left (-\operatorname {arctanh}\left (\frac {\sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, d}{\sqrt {a \left (c +d \right ) d}}\right ) a c +a \,\operatorname {arctanh}\left (\frac {\sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, d}{\sqrt {a \left (c +d \right ) d}}\right ) d +\sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, \sqrt {a \left (c +d \right ) d}\right )}{d \sqrt {a \left (c +d \right ) d}\, \cos \left (f x +e \right ) \sqrt {a +a \sin \left (f x +e \right )}\, f}\) \(137\)

[In]

int((a+a*sin(f*x+e))^(3/2)/(c+d*sin(f*x+e)),x,method=_RETURNVERBOSE)

[Out]

-2*a*(sin(f*x+e)+1)*(-a*(sin(f*x+e)-1))^(1/2)*(-arctanh((-a*(sin(f*x+e)-1))^(1/2)*d/(a*(c+d)*d)^(1/2))*a*c+a*a
rctanh((-a*(sin(f*x+e)-1))^(1/2)*d/(a*(c+d)*d)^(1/2))*d+(-a*(sin(f*x+e)-1))^(1/2)*(a*(c+d)*d)^(1/2))/d/(a*(c+d
)*d)^(1/2)/cos(f*x+e)/(a+a*sin(f*x+e))^(1/2)/f

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 167 vs. \(2 (82) = 164\).

Time = 0.34 (sec) , antiderivative size = 651, normalized size of antiderivative = 6.85 \[ \int \frac {(3+3 \sin (e+f x))^{3/2}}{c+d \sin (e+f x)} \, dx=\left [-\frac {{\left (a c - a d + {\left (a c - a d\right )} \cos \left (f x + e\right ) + {\left (a c - a d\right )} \sin \left (f x + e\right )\right )} \sqrt {\frac {a}{c d + d^{2}}} \log \left (\frac {a d^{2} \cos \left (f x + e\right )^{3} - a c^{2} - 2 \, a c d - a d^{2} - {\left (6 \, a c d + 7 \, a d^{2}\right )} \cos \left (f x + e\right )^{2} + 4 \, {\left (c^{2} d + 4 \, c d^{2} + 3 \, d^{3} - {\left (c d^{2} + d^{3}\right )} \cos \left (f x + e\right )^{2} + {\left (c^{2} d + 3 \, c d^{2} + 2 \, d^{3}\right )} \cos \left (f x + e\right ) - {\left (c^{2} d + 4 \, c d^{2} + 3 \, d^{3} + {\left (c d^{2} + d^{3}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {\frac {a}{c d + d^{2}}} - {\left (a c^{2} + 8 \, a c d + 9 \, a d^{2}\right )} \cos \left (f x + e\right ) + {\left (a d^{2} \cos \left (f x + e\right )^{2} - a c^{2} - 2 \, a c d - a d^{2} + 2 \, {\left (3 \, a c d + 4 \, a d^{2}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}{d^{2} \cos \left (f x + e\right )^{3} + {\left (2 \, c d + d^{2}\right )} \cos \left (f x + e\right )^{2} - c^{2} - 2 \, c d - d^{2} - {\left (c^{2} + d^{2}\right )} \cos \left (f x + e\right ) + {\left (d^{2} \cos \left (f x + e\right )^{2} - 2 \, c d \cos \left (f x + e\right ) - c^{2} - 2 \, c d - d^{2}\right )} \sin \left (f x + e\right )}\right ) + 4 \, {\left (a \cos \left (f x + e\right ) - a \sin \left (f x + e\right ) + a\right )} \sqrt {a \sin \left (f x + e\right ) + a}}{2 \, {\left (d f \cos \left (f x + e\right ) + d f \sin \left (f x + e\right ) + d f\right )}}, \frac {{\left (a c - a d + {\left (a c - a d\right )} \cos \left (f x + e\right ) + {\left (a c - a d\right )} \sin \left (f x + e\right )\right )} \sqrt {-\frac {a}{c d + d^{2}}} \arctan \left (\frac {\sqrt {a \sin \left (f x + e\right ) + a} {\left (d \sin \left (f x + e\right ) - c - 2 \, d\right )} \sqrt {-\frac {a}{c d + d^{2}}}}{2 \, a \cos \left (f x + e\right )}\right ) - 2 \, {\left (a \cos \left (f x + e\right ) - a \sin \left (f x + e\right ) + a\right )} \sqrt {a \sin \left (f x + e\right ) + a}}{d f \cos \left (f x + e\right ) + d f \sin \left (f x + e\right ) + d f}\right ] \]

[In]

integrate((a+a*sin(f*x+e))^(3/2)/(c+d*sin(f*x+e)),x, algorithm="fricas")

[Out]

[-1/2*((a*c - a*d + (a*c - a*d)*cos(f*x + e) + (a*c - a*d)*sin(f*x + e))*sqrt(a/(c*d + d^2))*log((a*d^2*cos(f*
x + e)^3 - a*c^2 - 2*a*c*d - a*d^2 - (6*a*c*d + 7*a*d^2)*cos(f*x + e)^2 + 4*(c^2*d + 4*c*d^2 + 3*d^3 - (c*d^2
+ d^3)*cos(f*x + e)^2 + (c^2*d + 3*c*d^2 + 2*d^3)*cos(f*x + e) - (c^2*d + 4*c*d^2 + 3*d^3 + (c*d^2 + d^3)*cos(
f*x + e))*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(a/(c*d + d^2)) - (a*c^2 + 8*a*c*d + 9*a*d^2)*cos(f*x + e
) + (a*d^2*cos(f*x + e)^2 - a*c^2 - 2*a*c*d - a*d^2 + 2*(3*a*c*d + 4*a*d^2)*cos(f*x + e))*sin(f*x + e))/(d^2*c
os(f*x + e)^3 + (2*c*d + d^2)*cos(f*x + e)^2 - c^2 - 2*c*d - d^2 - (c^2 + d^2)*cos(f*x + e) + (d^2*cos(f*x + e
)^2 - 2*c*d*cos(f*x + e) - c^2 - 2*c*d - d^2)*sin(f*x + e))) + 4*(a*cos(f*x + e) - a*sin(f*x + e) + a)*sqrt(a*
sin(f*x + e) + a))/(d*f*cos(f*x + e) + d*f*sin(f*x + e) + d*f), ((a*c - a*d + (a*c - a*d)*cos(f*x + e) + (a*c
- a*d)*sin(f*x + e))*sqrt(-a/(c*d + d^2))*arctan(1/2*sqrt(a*sin(f*x + e) + a)*(d*sin(f*x + e) - c - 2*d)*sqrt(
-a/(c*d + d^2))/(a*cos(f*x + e))) - 2*(a*cos(f*x + e) - a*sin(f*x + e) + a)*sqrt(a*sin(f*x + e) + a))/(d*f*cos
(f*x + e) + d*f*sin(f*x + e) + d*f)]

Sympy [F(-1)]

Timed out. \[ \int \frac {(3+3 \sin (e+f x))^{3/2}}{c+d \sin (e+f x)} \, dx=\text {Timed out} \]

[In]

integrate((a+a*sin(f*x+e))**(3/2)/(c+d*sin(f*x+e)),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(3+3 \sin (e+f x))^{3/2}}{c+d \sin (e+f x)} \, dx=\int { \frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}}}{d \sin \left (f x + e\right ) + c} \,d x } \]

[In]

integrate((a+a*sin(f*x+e))^(3/2)/(c+d*sin(f*x+e)),x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^(3/2)/(d*sin(f*x + e) + c), x)

Giac [A] (verification not implemented)

none

Time = 0.37 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.32 \[ \int \frac {(3+3 \sin (e+f x))^{3/2}}{c+d \sin (e+f x)} \, dx=\frac {\sqrt {2} {\left (\frac {2 \, a \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )}{d} + \frac {\sqrt {2} {\left (a c \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - a d \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )\right )} \arctan \left (\frac {\sqrt {2} d \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )}{\sqrt {-c d - d^{2}}}\right )}{\sqrt {-c d - d^{2}} d}\right )} \sqrt {a}}{f} \]

[In]

integrate((a+a*sin(f*x+e))^(3/2)/(c+d*sin(f*x+e)),x, algorithm="giac")

[Out]

sqrt(2)*(2*a*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)/d + sqrt(2)*(a*c*sgn(cos(-1/4*
pi + 1/2*f*x + 1/2*e)) - a*d*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)))*arctan(sqrt(2)*d*sin(-1/4*pi + 1/2*f*x + 1/2
*e)/sqrt(-c*d - d^2))/(sqrt(-c*d - d^2)*d))*sqrt(a)/f

Mupad [F(-1)]

Timed out. \[ \int \frac {(3+3 \sin (e+f x))^{3/2}}{c+d \sin (e+f x)} \, dx=\int \frac {{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{3/2}}{c+d\,\sin \left (e+f\,x\right )} \,d x \]

[In]

int((a + a*sin(e + f*x))^(3/2)/(c + d*sin(e + f*x)),x)

[Out]

int((a + a*sin(e + f*x))^(3/2)/(c + d*sin(e + f*x)), x)